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Uniform q-series asymptotics for staircase polygons 

T Prellbergfz 
Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Austnlia 

Received 31 October 1994 

Abstract We present a uniform asymptotic expansion for the ma-perimeter generating 
function of staircase polygons by calculating the asymptotic behaviour of the alternating y- 
series l h ( 0 ;  y: q , x )  as y + I- from a new integral representation. This leads to a direct 
calculation of the scaling function for this model. 

1. Introduction 

Recently, we investigated the tricritical behaviour of geometric cluster models [l]. In 
this class of models we have the vesicle model of self-avoiding polygons, enumerated 
by perimeter and area. Interest in this model resulted from the study of models of closed 
fluctuating membranes (or vesicles). The influence of an osmotic pressure differenceon such 
closed membranes can be studied by a lattice model of closed surfaces. In two dimensions, 
this is just the geometric model of self-avoiding polygons, which was investigated by Leibler 
eb al [2]. Among other parameters, they analysed its scaling behaviour with respect to area 
and perimeter fugacities. The general features of this model were established by Fisher 
et al [3]. They showed rigorously that the model of self-avoiding polygons on the square 
lattice Z* exhibits the singularity diagram displayed in figure 2, characterized by an essential 
singularity at unit area fugacity. Moreover, they argued that the same singularity diagram 
exists for a suitably defined model of closed hypersurfaces in Zd in dimension d > 2. They 
also presented numerical estimates for the critical exponents associated with this model. 

However, as very little else can be said rigorously about,this model, it is desirable to look 
for simplified models that might be more amenable to rigorous treatment, hopefully without 
destroying the very transition that one intends to study. For geometric cluster models, it is  
well known that the introduction of a suitable constraint of (partial) directedness can lead 
to exact solvability (see e.g. [4]). Introducing such a constraint into the vesicle model of 
self-avoiding polygons leads to various models of partially convex vesicles [5-71. These 
models turn out to be solvable, in the sense that an explicit expression for their generating 
functions can be given. These expressions can be obtained from recurrence relations or 
functional equations, and are generally quotients of alternating q-series. However. the lack 
of suitable asymptotic expansions for these series forced us to use indirect methods to 
extract the critical behaviour [5-71. In the discrete case, a perturbation expansion along 
with a tricritical scaling ansatz led to the computation of the complete set of critical 
exponents from nonlinear functional equations. Altematively, we considered, as a further 
simplification, a semicontinuous version of these models. Here, one can derive nonlinear 
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1290 T Prellberg 

differential equations from which we extracted scaling solutions via the method of dominant 
balance. In particular, it turned out that the semicontinuous versions of the three models 
of staircase polygons, directed column-convex polygons, and column-convex polygons all 
share the same exponents and scaling function. 

In order to calculate the scaling behaviour for the discrete lattice models, we thus 
had to either invoke a scaling assumption or a universality argument to bridge the gap. 
The aim of this paper is to now close this gap by presenting a direct calculation of the 
asymptotic behaviour of the generating function. Following a suggestion of Philippe Flajolet 
to Richard Brak [8] we choose to attack the problem by seeking a suitable contour integral 
representation of the q-series. A study of its saddlepoint structure then leads us to a suitable 
asymptotic expansion via standard techniques. In particular, we come to understand the 
(mathematical) origin of the singular point in this model: it is caused by the collision of 
two saddle points. 

The structure of this paper is as follows. In the remaining part of this section we 
briefly introduce the model of staircase polygons and give its generating function. After a 
brief description of the singularity structure of this generating function we then present our 
main result and read off the critical exponents and the scaling function for this model. In 
section 2 we formulate a contour integral representation for the relevant q-Bessel function 
and in section 3 we derive some asymptotic expressions for the q-products which appear 
in the representation. In section 4 we then use the contour integral to derive a uniform 
asymptotic expansion for q-Bessel functions (involving Airy functions) and in section 5 
we conclude by applying these techniques to the generating function of staircase polygons. 
We point out that these techniques can also be applied to other partially oonvex polygon 
models. Due to the calculations from the semicontinuous models, we expect to get similar 
results as for staircase polygons, although the calculations will be more difficult to carry 
out in detail. 

The set of staircase polygons is defined as the set of all polygons on the square lattice 
whose perimeter consists of two fully directed walks with common start and end points (see 
figure 1). We denote by c;"." the number of all staircase polygons with 2n, horizontal steps 
and Zn, vertical steps which enclose an area of size m, and define the polygon-generating 
function G(x,  y, q )  to be 

(1.1) 

G ( x , ~ , q )  = I G ( g x , ~ , q ) + q x J I y  +G(x,y ,q)J  (1.2) 

"."P n, G(x, y , q )  = c c m  x y"Yqm. 

In [5] it was shown that the generating function satisfies the nonlinear functional equation 

from which one can derive an explicit expression 

Figure 1. A stircase polygon with width n, = 10, height = 8, and m a  
m = 45, having weight xl"yaq45. The marked sites denote the start and end 
of the fully directed walks. 
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where we have used the q-product notation 
n-1 

(r;  4). = - w m ) .  (1.4) 
m d l  

The function H ( x ,  y ,  q )  = 1&(0; y ;  q ,  x )  is a q-deformation of a Bessel function 191. One 
sees that the l i t  q + 1- is singular. However, from the functional equation (1.2) it is 
clear that in the limit q = 1 the perimeter generating function G(x, y )  is, in fact, algebraic, 

The singularity structure of this generating function is of particular interest to us. We 
briefly sketch the form generally expected for polygon models (for details see Brak er al [I]). 
Consider for simplicity the generating function 

C(x ,q )  = G ( x , x , q )  = C c k x " q m  ,(1.6) 

where ck is the number of polygons with perimeter 2n and area m. The finite-area partition 
function for polygons with fixed area m is then 

A,(x) = c;xn 
n 

(1.7) 

G(x, q )  is a power series in q with coefficients A,(x),  and its radius of convergence, q&), 
is given by 

(1.8) qc(x) = lim A, (x)-"'" . 
m+m 

A schematic plot of q,(x) is shown in figure 2. The existence of this limit can be shown 
using sub-multiplicative inequalities [3]. There exists a critical value xt such that q,(x) = 1 
for 0 < x < x,. For x < xtr the generating function has an essential singularity in q 
at q = 1. On the line q = 1, G ( x ,  1) is finite for x c x,  and is singular with an exponent 
yu as x approaches xt. At xc, the generating function is singular with an exponent yt as 
q + 1. For x z xt, the generating function has a simple pole as q approaches q&) < 1. 
The point (1, xt) is an example of a 'tricritical' point [ 11, and one expects the singular part 
of the free energy to show a crossover behaviour of the form 

G""g(x,q) - (1 -q)-"f((l -q}- '[~t  - x ) )  (1.9) 
with 

if z + o o  
if z + O  

(1.10) 

I , , , Figure 2. The schematic form of the radius of convergence of 
the area-perimeter generating function for patially convex vesicle 

0 =c 1 models. 
0 
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where q5 is called the bicritical crossover exponent and yu = yt/@. Here, f and z may be 
rescaled by non-universal factors, but the scaling function f and the exponents are universal. 

More precisely, the scaling function f (if it exists) is defined as a limit where the 
argument z = 11 - q]-m[xt - .r] is fixed and x + x, from the appropriate direction, i.e. 

f ( z )  = lim ({xt - x]/r)"~" '"~(x,  1 - ((xL - x]/z)'/@) . (1.11) 

One sees from this definition that such a scaling function is only defined on approaching 
the tricritical point, and its validity outside a neighbourhood of that point is not guaranteed. 

The calculation presented in this paper will give this scaling function f explicitly. Our 
main result implies that 

x-X I  

as 6 = - log 4 + 0, where CY is sbme complicated function of x and y which simplifies to 

(1.13) 

for (1 - x - y)' z 4xy. Moreover, our result is valid uniformly for a whole range of x and 
y as E + 0 and not just in the scaling limit which involves the simultaneous limits 6 -+ 0 
and (Y + 0. This can be easily seen from (1.12), as the factor in the last bracket of (1.12) 
approaches -1 in the limit E -+ 0, so that we recover (1.5) completely. In order to read off 
the scaling function more easily, we further restrict ourselves to x = y so that we can write 

Ai'(44/3{1/4 - x)E-'/~) 
Ai(44/3( 1/4 - x}s-'/3) . G(x,q) -;-x+4-2/3&"3 

Ignoring the non-universal factors, this shows that the scaling function is given as 

Ai'(z) 
f ( z )  = -- 

Ai(z) 
and that 

1 
3 '  --L yt = -- " -  ' q 5 = '  

3 

2. A contour integral representation for q-Bessel series 

We are interested in finding a suitable contour integral representation for 

(1.14) 

(1.15) 

(1.16) 

For the sake of clarity, we first illustrate our reasoning through some elementary 
examples. One naturally begins with the standard trick of writing an alternating series 
as a contour integral which utilizes the fact that the residue of n/sin(ns) at integer n is 
equal to (-1)". Provided that the coefficients of an alternating power series can he extended 
to an analytic function in the vicinity of the real axis, one can write 

where the contour is counterclockwise around the zeros of sin(ns). After a suitable 
deformation of the contour C, this is usually amenable to some sort of saddle-point 
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approximation in the left half-plane. As a simple example, consider the exponential function 
for negative argument, which we can write as 

for some c =- 0, where we were able to considerably simplify the integrand by using the 
reflection formula 

In this example, the poles of the gamma function cancel with the zeros of sin(7rs) in the 
left half-plane, so that that the integrand is, in fact, analytic for Re(s) e 0. 'This is a 
considerable simplification, as it reduces  the restrictions on possible contour deformations. 
Naturally, we can use the same trick for, say, the q-exponential, and we get 

where we extended the q-product ( x ;  q). to complex values via 

While this representation can be used, for example, to derive nice transformation 
formulae [9], it is not that well suited to the derivation of asymptotic .expadsions. What 
is required is a suitable q-generalization of (2.4). The q-gamma function is conventionally 
defined as 

r,(s) = (1 - q)1-5(q; q)s-l (2.7) 

so that in analogy to the product r(s)r(l - s) we are led to consider 

-(2.8) 

(2.9) 

(2.10) 

A y e )  = -q-*AY(s + 1) .  (2.11) 

Ay@) has simple poles at s = n + mZni/logq for integer m and n, and a straightforward 
calculation gives the residues: 

(2.12) 

A&) has no zeros, so that its inverse l/A,,(s) is an entire function. Using Jacobi's triple 
product identity one can find alternate expressions for A,(s) [IO], but for our purpose the 
knowledge of the singularity structure along with the values of the residues suffices. 

Using A&) rather than r/sin(irs) provides a much better representation for the q- 
exponential 

(2.13) 
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"1 x X I 1  
Figure 3. The contours of integration used in (a) equation (2.13) and (b) equation (2.14). The 
crosses indicate the poles of the integrand. 

The integrand is analytic in the left half-plane, but the contour is restricted by the poles 
of the integrand at s = n + m27ri/logq for integer m and non-negative integer n.  We 
choose C to consist of straight-line segments between -ai/logq + CO, -ni/logq - c, 
a i /  logq - c and a i /  logq +CO for some c > 0 (see figure 3(a)). It is convenient to change 
the integration variable to z = qwS so that 

(2.14) 

The integrand has poles at q" for non-negative integer It and a branch cut from zero to 
minus infinity. The contour C' now mns from ice to ic' for c' = q-'. then in a semi-circle 
centred at zero to -ic' and further to -io0 and can easily be transformed to run along the 
straight line (p+ico, p -im) for some 0 < p < '1 (see figure 3(b)). With these introductory 
remark we have motivated our first lemma. 

Lemma 2.1. For complex x with larg(x)l < n and 0 < q < 1 we have 

(2.15) 

Proof: Define contours CN = Ch U C i  U C3, where CA = {q-N-1/2exp(it) : It1 < x/2], 
C i  = { t  : q'l2 < It1 < q-N-'/2],  and C3 = (q'j2exp(it) : It1 < n/2], and integrate 
anti-clockwise over CN to get 

In order to estimate the contribution from Ch, we first need a bound on the integrand for 
large IzI with larg(z)l < n: 

as it is dominated by the product in the denominator. Therefore we have 

(2.17) 

(2.18) 
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Now we can write 

1295. 

(2.19) 

where in the last step we changed the direction of integration. As we have shown that the 
integrand decays to zero at infinity  we^ can now deform the contour to ( p  - ico. p + ico). 
This concludes the proof of the lemma. 0. 

For x = q we get the identity 

-1  dz 5kil::z-X- (2.20) 

where the integral is independent of q. This identity can be understood as follows. We 
transform the contour to a circle around the origin, so that /zI < 1. Now, we are allowed 
to expand (z; q)-' = z"/(q; 4). and upon exchanging integration and summation we 
observe that only the term n = 0 with a residue of 1 contributes to the integral. 

As the proof shows, it is of c o m e  not necessary to proceed via the function A,($) 
to derive the contour integral representation (2.15). In hindsight, there would have been 
a more direct way to write down the contour integral representation for the q-exponential 
function by simply observing that (z; q);I has poles at z = q-" for non-negative integer n 
with residues 

(2.21) 

and that these residues already contain much of the structure of the coefficients of the series. 
Generalizing the above to H ( x ,  y, q)  is now immediate. 

Lemma 2.2. For complex n with larg(x)[ e n, complex y with y # q-" for non-negative 
integer n, and 0 e q -c 1, we have 

Prooj! We choose contours CL. C i ,  C3 and CN as in the proof of lemma 2.1 and show that 
the contribution from the integral over C; tends to zero. For this, we estimate the integrand 
as 

Z-losx/logq (Y/G q)m I < IxIN+'peXp (*) (-IylqN+'/*; q)m 

(z;q)m I (q"? q)m n;l("='/2 - 1)  
SUP I 

ILI=y-N-I /I  

=o(q N'/Z ) .  (2.23) 

Now, integration over CN by computing the residues at q-" and taking the limit N -+ 00 
completes the proof. 0 

We now have a suitable representation of H to consider the q + I -  asymptotics. 
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3. Asymptotics of q-products 

In order to get an asymptotic expansion from the contour integrals in the previous section 
we first need to derive some asymptotic expansions for the q-products which appear in 
the integrand. As these q-products are basically qdeformations of the gamma function, 
one needs to derive a q-analogue of Stirling's formula [Ill. For a heuristic derivation, we 
simply take the logarithm and expand 

( tq")m 1 t m  m 

lOg(t;q),=Clog(l-tq")=-CC-=- 
m= I m "=O n=O m=l 

where in the last step we have used the expansion t/(er - 1) = CEo(Bn/n! ) tn ,  where B, 
are the Bernoulli numbers. Here Liz@) = E,"=, tm/mz is the Euler dilogarithm [12] which 
can be extended to complex r by the integral representation 

Later, we will use the functional equation 

Liz(x) + LiZ(1- x )  = in* - IO&) log(1- x )  (3.3) 
which is valid for 0 < x < 1. We want to show that the expansion (3.1) is in fact an 
asymptotic expansion for g + 1- uniform in t for some complex domain. To formalize 
this, we need to resort to the Euler-Maclaurin summation formula 1131, which we state here 
for completeness sake. 
Lemma 3.1 (Euler-Maclaurin). I f f  E C"[O, NI for integer N then 

(3.4) 
where 

Here B.(x) is the nth Bernoulli polynomial, B,, = E,(O), and m is any positive integer. 

has been done in [ll]. Generalizing these results we now prove: 
We now apply this lemma to log@; q)m wirb f ( x )  = Iog(1 - rq'). For 0 c t c 1 this 

Lemma 3.2. For complex t such that larg(1 - r)l < x and 0 < q < 1 

is an asymptotic expansion as q + I-. This expansion is uniform for I in any compact 
domain such that larg(1- t)l < IT. 

ProoJ We use lemma 3.1 with f ( x )  = log(1 - tqx) .  First, we need a formula for its 
derivatives. We write 

(3.7) 
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Inserting this into (3.4) we write 
Oa 

log(t: q)Oa = 1 log(] - t q X ) d x  + 4 log(1 - t )  

t m-1 "-2 

+ R,  . (Zn)! n= I 

(3.8) 

(3.9) 

We still have to consider the remainder term 

(3.10) 

which we estimate as 

Using lemma 1 in [ I l l  we can write for n 1 

U U (2)" - 1 - U  = (l-uU)"+l Ptl-I(U) 

(3.11) 

(3.12) 

where Pa@) is a  polynomial of degree It with positive integer coefficients satisfying 
fn (0)  = 1 and Pn(l) = ( n  + I)!. Therefore, 

where 4 = arg(f). Now we see that if the integration path has distance c from 1 and t is 
bounded, then the integral is uniformly bounded. This is certainly the case if we choose 

0 

We can use (3.13) to get more explicit error bounds. For instance, if we set m = I we 

(3.14) 

r to be in any compact domain such that larg(l - ?)I < ii. Here R,  = ~ ( ( l o g q ) ~ - l  1 
uniformly which concludes the proof of the lemma. 

can evaluate the integral explicitly to get 
1 

log(?; q)m = -Liz@) + 4 logcl - t )  + log(q)R(t, q)  
log 4 

where R(r, q )  has a bound independent of q 

(3.15) 
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Clearly, lemma 3.2 does not cover the case t = q ,  which we therefore have to treat 
separately. There is the beautiful conjugate modulus transformation which we can utilize 
(see e.g. Hardy's book on Ramanujan [141): 

Lemma 3.3. 

(3.16) 

where r = exp(--&) - and 0 c q  c 1. 

finds the expression 
Using Poisson summation, a similar formula has been arrived at in [ll], where one 

without the identification of the sum with (r; r);I. 
Therefore, to leading order we have 

(3.18) 

4. Uniform asymptotics for the q-Bessel function 

We now return to the investigation of H ( x ,  y, q).  In this section we provide an asymptotic 
expansion via its contour integral representation (2.22). We restrict ourselves to 0 < 
x, y, q -= 1 and introduce the notation E = - logq. 

First, we need to approximate the integral representation from lemma 2.2 to make an 
analysis tractable. Using the asymptotic formulae from the previous section we get 

Lemma 4.1. Let 0 c x ,  y < 1 and q = e-' for E > 0. Then 

where y c p c 1. 

Prooj From lemma 2.2 we have that 

We can now apply (3.14) to get 

(Y/z; q)mZ-logi/logy = ~ ~ [ l o s ( ~ ) l ~ f i ( ~ ) + ~ ~ ( ~ ) - t i ~ ( ? / z ) l  1-y/z ee(R(z.y)--R(?lz.qll , (4.3) (z; q)m L-Z 
Now if we write z = p j- it and choose y c p c I then (3.15) implies that 

IR(z,q) - R(~/z,q)l = O(maxIlogItl, 11) (4.4) 

which is not a uniform bound independent oft so that we have to exercise some care. Now, 
expanding the last exponential term into its power series and exchanging the summation 
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over powers of &((R(z, q )  - R(y/z, q ) ]  with integration we get an asymptotic series in E,  

so that we can write 

(4.5) 
Now we are left with Laplace-type integrals of the form 

In = 1 d(z)'ef (z)[h(z, e)l"dz 

g(z) = log(z) log(x) + Lidz) - Liz(y/z). 

(4.6) 

where Wz, E )  = R(z, q )  - R(y/z, q) ,  and 

(4.7) 
Applying the saddle-point method to the E + 0 limif we see from the derivative 

(4.8) 

that there are two saddle points. Around the saddle points R(z, q )  - R(y/z, q) is bounded 
so that in (4.5) the second integral is of the same order of magnitude as the first integral. 
Therefore we arrive at 

p+im 

(y/z; 4)mz-logx/logq d Z s p-im (z;q)m 

(4.9) 

Finally we apply (3.14) and (3.18) to the remaining prefactors picking up further 
multiplicative error terms 11 + O(E)]. This completes the proof. 0 

Now that we have an asymptotic representation of H ( x ,  y, q )  as a genuine Laplace-type 
integral, we can proceed with the actual calculation of the dominant asymptotic form. The 
two saddle points are the zeros 21.2 of the quadratic equation 

(4.10) (z - I)(z - y) + zx = 0.  
There will be a change in the asymptotic behaviour when the saddles coalesce due to 
the discriminant changing sign. For the polygon problem the point of coalescence is the 
tricritical point. Thus to obtain the scaling function we need an expansion that is uniform 
in both saddle points. 

The problem of deriving a uniform asymptotic expansion for the case of two coalescing 
saddle points has been investigated in [E, 161. We briefly summarize their analysis here 
(for a very readable account see 1171). Assume that the two functions f and g are analytic 
in z in some domain containing a path C, and consider 

I(&; d )  = e!S(Z:d) f ( z )dz .  (4. I I )  

Moreover. assume that g is analytic in d and that g has two distinct saddle points of 
multiplicity 1 for d # 0 which coalesce when d = 0. We first reparametrize locally by a 
cubic 

g(z) = ; u ' - ( Y u + ~  (4.12) 
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so that the saddle points of both expressions coincide. Differentiating (4.12) we get 
g'(z)* du = uz -a so that we identify 

u = i f f ~ ~ 2 c - t z = z 1 . 2  (4.13) 

and determine (Y and p from 

g(zd = -jff 3/2 + B g(22) = 3.w "2+ p .  (4.14) 

Selecting the correct branch of the cubic equation, the transformation given by (4.12) with 
(4.14) is one-to-one and analytic in a neighbourhood of d = 0. In practice, one still has 
to show additionally that this neighbourhood extends to a domain containing the path of 
integration. Assuming this to be the case, we proceed by expanding 

Denoting the image of C as C' and writing 

we get the asymptotic expansion 

(4.15) 

(4.16) 

(4.17) 

The function V(A) is expressible using the Airy function Ai@), the exact relation depending 
on the contour C'. We finish this section by presenting explicit formulae for the coefficients 
a0 = po and bo = qo of the leading-order terms. Differentiating (4.12) twice and inserting 
the saddlepoint values we get 

(4.18) 

We are now in a position to compute the leading asymptotic behaviour of our contour 
integral. 

Lemma 4.2. Let 0 c x ,  y < 1 and q =e-' for E > 0. Then 

- - e'os(x)'o~cy)?& [ g ~ ~ ' ~ ~ A i ( ( ~ s - ~ ~ ' )  + q&/3Ai'(or&-ZTJ)] (1 + O(E)) (4.20) 

where 

with 

(4.21) 

(4.22) 
I + y - - x  and d = z $  - y 

2 z , . z = z , f J ; i  & =  
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and 

(4.23) 

Proof: The exponential part of the integrand 

has two saddle points at 21.2,  where 

(4.25) I + y - x  2 and d = z , - y .  
2 zl.z = Zm k A Zm = 

Using the reparametrization (4.12) we determine the constants (Y and @ from (4.14) as 

(4.26) 

2g = log(x) log(y) . (4.27) 
We need to show that the transformation (4.12) extends to a domain containing the contour 
C = ~ { p  +it; -w < t < 00). This can be done by explicitly computing the relevant branch 
of u(z) (i.e. the branch that is real for z real) 

u(z) = ( f M z )  - 0)  + JV' ,(g(z) - B ) )  - f f  )]I3 (4.28) 

(4.29) 
One sees on closer inspection that the mapping is indeed one-to-one in a domain containing 
z = p + it with real t .  

g(p + it) - Liz(p +it) - -;logz 
so that the asymptotic behaviour of u(z)  is given by 

u ( p  + it) - e x p ( ~ i / 3 )  (i log2 1t1)ll' 

+ff(&?(Z) - 0) + &GGj5-1/3. 

For t --f f w  the asymptotic behaviour of g(z) is dominated by the dilogarithm 

i i+ log It1 t -+ iw (4.30) 

t --f *w. (4.31) 
Thus, the path C' runs from coe-in/3 via the origin to ~ o e + ~ " / ~ ,  whence V(A) is, in fact, 
equal to the Airy function Ai@). Finally, we compute the prefactors po and q0 from (4.19) 
as 

114 ff 1/4 
Po=(-) d ( I - x - y )  q 0 = ( 3  (4.32) 

' Inserting all of this into (4.17) gives (4.20). This completes the proof. 

; 0 1 ~ / ~  = iog(zm + A) iog(i - zm + &) - wZm - ~ A j i o g ( i  - z, - 4) 

0 

We can use the functional equation (3.3) for the dilogarithm to write 

+Li2(zm - A) + ~ i z ( 1 -  zm - A) - Liz(zm + AT- Liz(1- zm + A). 
(4.33) 

Using the fact that exchanging x and y transforms zm into I - zm and leaves d invariant 
shows now that 01 is symmetric in x and y: Therefore, the terms in the asymptotic expansion 
(4.20) are symmetric in x and y. as they should be. Moreover, in the limit of small d we 
can expand 

(4.34) 
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so that a is basically just a suitable rescaling of d .  Combining lemmas 4.1 and 4.2 we 
finally arrive at the main result of this section. 

Lemma 4.3. Let 0 < x ,  y c 1 and q =e-' for E 

H ( x ,  y .  q )  = [ p ~ & ' ~ ~ A i ( a s - ~ / ~ )  + q ~ ~ ~ / ~ A i ' ( a e - ~ ~ ~ ) ]  

0. Then 

where 

with 
z and d = z m - y  Z 

2 z 1 , z = z m ? C J i  z m =  

and 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

5. Asymptotics for stairease polygons 

Using the contour integral representation (2.22) we now present the contour integral 
representation for the staircasegenerating function. 

Lemma 5.1. For complex x with la&)] c H ,  complex y with y # q-" for non-negative 
integer n, and 0 c q c 1 we have 

Proof Using (2.22), we can write 

O c p c l .  

Inserting this into 

and combining the prefactors results in (5.1). 

We again simplify the integrands, resulting in the next lemma. 

Lemma 5.2. Let 0 c x ,  y c 1 and q =e-€ for E > 0. Then 
P+im efllog(r) log(x)+~z(z)-Lh(Y/z)l E Jp-im 

G(x, ' 3  4) = 
,?llog(~)log(x)+Lir(r)-tiiOl/z)l 

p-im 

(5.3) 

0 

(5.4) 

where y c p < 1. 
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Proof: As in the proof of lemma 4.1, we approximate the integrands using (3.14). The 
exponential parts of the involved integrals, as well as the error terms, are identical to the 

From the work in the previous section it is clear that we will arrive at an asymptotic 

ones in lemma 4.1 so that the proof carries over directly. 

expression of the form 

( I )  1 / 3 ~ ( ~ & - 2 / 3 )  + q f ) ~ 2 / 3 ~ / ( ~ ~ - 2 / 3 )  Po 

and all that is left is to determine the coefficients involved. We get 

Theorem 5.3. Let 0 < x, y c 1 and q = e-' for E > 0. Then 

(5.5) 

(5.6) 
is a uniform asymptotic expansion in E ,  where 

;a312 = log(z, + 4) log(1 - Zm + 4) - log(z, - 42) log(1 - Zm - &) 

+Li2(zm - &I + Liz(1- zm - &) - Li2(zm + 4) - Liz(1- zm + &) 

(5.7) 

with 

* + y - - x  and d = z m - y .  2 (5.8) 
2 21.2 = Zm f 42 Zm = 

ProoJr We use the approximation from lemma 5.2. As the exponential part g(z), as well 
as the path of the integral, is identical to the one in lemma 4.2, the whole argument carries 
over. Equation (4.14) gives the same OL and 0 and we can again identify V(h)  with Ai@). 
Moreover, using (4.19) we can compute the coefficients for the leading terms as 

for the enumerator and 

(5.9) 

(5. IO) 

for the denominator. Inserting these into (5.5) results in (5.6). 

In [5] we computed a scaling form from the semicontinuous limit 

(5.11) 
1 

G,,(x, y , q )  = lim -G(u2x, y o .  9"). 
U-+O a 

Taking the same limit in  (5.6) we recover that scaling form. We note that the uniform 
asymptotic expression presented here is more general and exhibits the symmetry between 
x and y ,  a feature that gets lost upon taking the semicontinuous limit as in [5]. The 
same scaling form has also been derived in the semicontinuous models of column-convex 
vesicles 161, with the only difference being different non-universal constants. However, this 
is the first time that the scaling form has been derived directly for the discrete model. 
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